

1-WIRE® DEVICES ASICs BATTERY MANAGEMENT Jan 19, 2001

App Note 119: Embedding the 1-Wire Master

This application note shows how to incorporate the 1-Wire® Master (1WM) into a user's
ASIC design. It contains excerpts of how to create a 1-Wire Master instance in Verilog. The
DS89C200 referred to in this document is a theoretical microcontroller. It is assumed the
reader has knowledge of the DS1WM 1-Wire Master and the 1-Wire protocol in general.

Introduction
The DS1WM 1-Wire® Master, termed 1WM, was created to facilitate host CPU communication with devices over a
1-Wire bus without concern for bit timing. This application note shows how to incorporate the 1-Wire Master into a
user's ASIC design. The DS89C200 referred to in this document is a theoretical micro controller. It is assumed the
reader has knowledge of the DS1WM 1-Wire Master and Dallas Semiconductor's 1-Wire protocol. For more
detailed information see [1] Book of iButton Standards and [2] DS1WM Datasheet.

Structure
The 1WM is arranged as a top-level harness that connects four sub-modules together to form a complete unit.
There is no HDL code in the toplevel harness. The four sub-module files consist of the one_wire_interface, the
one_wire_master, the clk_prescaler and the one_wire_io. For applications that do not need the clock prescaler, this
module can be left out if an external 1 MHz clock source for the clk_1us signal is supplied (Noted as in the
DS1WM datasheet, the input clock is specified from 0.8 to 1.0 MHz).

The one_wire_io module provides the bidirectional signals for the DATA and the DQ signals. In most applications
the DQ signal will be an I/O pin. If this is the case, the pad driver for DQ must be an open drain pad with the proper
ESD protection (figure 1). Also, if the peripheral devices use a pull-up voltage that is greater than the 1WM supply,
then a pad driver must be chosen that can tolerate the extra voltage and diode clamps must not be used. Dallas
recommends that the output driver (Q1) of 100 and an external DQ pull up of 4.7 k to chip VCC. Chip VCC
must be greater than VIH of the 1-Wire slave for proper communication.

Figure 1. DQ Pad Driver (one_wire_io)

Libraries
To compile the Verilog source no external libraries are required. The VHDL source version requires both IEEE.
std_logic_1164 and work.std_arith libraries.

1 of 3

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/1/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/27/ln/en
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/5/ln/en

Connections
The following table lists the wires that needed to be connected for proper operation of the 1-Wire Master.

Pin Operation
DQ Open Drain Bi-directional 1-Wire Bus Connection
DATA Bi-directional 8 Bit Data Bus
ADDRESS 3 Bit Address Bus
ADS-bar Address Strobe
EN-bar Instance Enable
RD-bar Read Data Strobe
WR-bar Write Data Strobe
INTR Interrupt Detection
CLK System Clock
MR Mater Reset

If no address strobe is available in the system, the ADS-bar may be tied low making the address latch transparent.
The EN-bar signal should be generated by address decode logic external to the 1WMaster module. If the 1WM is
the only instance on the data bus, EN-bar may be tied low. The system clock wired to CLK must be between 3.2
and 128 MHz. For detailed operation of all connections see the [2] DS1WM 1-Wire Master datasheet.

Instance
The following is an example of how to create a 1-Wire Master instance in Verilog.

module DS89C200 (...top level list...);

wire [7:0] DB;
wire [2:0] ADDR;
wire sysclk, read-bar,
 write-bar, master_reset,
 interrupt, addr_strobe;
wire DQ_OUT;

supply1 Tie1;
supply0 Tie0;

cpu xcpu(.CLK(sysclk),
 .DB(DB),
 .EXTRD-bar(read-bar),
 .EXTWR-bar(write-bar),
 .EXTADDR(ADDR),
 .RESET(master_reset),
 .EXTINTR(interrupt),
 .ADDR_ST(addr_strobe),
 ... other I/O signals ...);

onewiremaster xonewiremaster(
 .ADDRESS(ADDR),

2 of 3

 .ADS-bar(addr_strobe),
 .EN-bar(Tie0),
 .RD-bar(read-bar),
 .WR-bar(write-bar),
 .DATA(DB),
 .INTR(interrupt),
 .CLK(sysclk),
 .DQ(DQ_OUT),
 .MR(master_reset));

... rest of design ...

All signals generated by xcpu meet the 1-Wire Master timing requirements. The EN-bar signal is tied low because
there is no other addressable logic on the data bus. The DQ_OUT signal is wired directly to an I/O pad.

Synthesis
Synthesis of this design is very straightforward. A bottom up approach is recommended compiling the individual
submodules individually and afterwards optionally compiling the top level. Timing constraints need to be placed on
the clk_1us signal along with sysclk signal. Further timing constraints may be necessary for some of the
asynchronous control signals such as WR-bar, RD-bar, EN-bar ADS-bar and MR. Additional constrains may be
necessary for clk_1us to keep buffers from being inserted on the clock signal. In most cases will be necessary to
have strategy for clock distribution such as a clock tree.

Included with the source code are example synthesis scripts and Makefile to be used with Synopsys design
compiler. To use these it is necessary to create a .synopsys_dc.setup file that defines the target synthesis library.
In addition, it is necessary to modify the included environment file (named "environment") to specify the device from
the target library to be used for specifying output drive strengths and input loads. These example scripts are very
generic. The actual scripts and constraint files would be generated by the engineer to meet the timing requirements
of the specific design. One thing to keep in mind is that the timing in the 1-Wire Master block is not entirely
synchronous by design. The DQ output is synchronized to CLK, but the bus read/write timing will only be
synchronous to CLK if the CPU uses CLK to generate RD-bar, WR-bar and ADS-bar. See the specification for the
timing relationships for these signals.

This example design is fully self contained. It has been successfully compiled to FPGA and ASIC targets with
success. When synthesized to a typical ASIC target library, the design uses about 110 flip-flops, 3 latches, and a
total of 1492 gates.

More Information

DS1WM: QuickView
-- Full (PDF) Data
Sheet

DS2408: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

DS2502-E48: QuickView
-- Full (PDF) Data
Sheet

-- Free Samples

3 of 3

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2834/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1WM.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1WM.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3818/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2408.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2408.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2408&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3748/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS2502-E48.pdf
http://pdfserv.maxim-ic.com/en/ds/DS2502-E48.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS2502-E48&ln=en

